Баня-Экстерт

Уже невозможно пересчитать все статьи и все публикации по поводу этих генераторов. И чего только про них не написано, и что это решение всех энергетических проблем, и что это полное шарлатанство. Вся эта тема обросла кучей домыслов и всяких легенд. Выдвигалось множество теорий и предположений, откуда берется дополнительная энергия – от холодного ядерного синтеза до использования энергии эфира. Из Америки то же поступают сведения, что якобы какой-то инженер создал тепловую установку с КПД 135% называется эта установка – поющая (свистящая) при работе издает громкий свистящий звук. Но как практика показывает чудес в природе не бывает и всякое чудо можно объяснить, если досконально разобраться в сущности вопроса. Когда фокусник достает голубя из своей пустой шляпы это производит впечатление. Так откуда же берется дополнительная энергия в генераторах Потапова и прочих аналогичных устройствах. Вот в этом вопросе и попытаемся разобраться в данной статье.

Все по порядку. Несколько лет назад, с моей подачи, одна авто мастерская приобрела генератор Потапова. Авто сервис располагался в двух больших ангарах, стоящих рядом, и представляющих собой металлические полубочки площадью около 300 квадратных метров каждая. Эти строения остатки слесарных мастерских от бывшего гаража совхоза. К ним подведено 3-х фазное электричество, и не подведено отопления и воды. В данной ситуации генератор Потапова казался панацеей для решения всех проблем. Я помог выбрать и приобрести генератор Потапова коллективу этого малого предприятия. Согласно техническим характеристикам генератора он должен выдавать не менее 140% КПД. Мне самому было крайне интересно а правда ли что будет такое – энергия из ни откуда. Прошла зима и был результат — ни какого КПД свыше 100% не было. После не сложных расчетов и вычислений было понятно что КПД установки находится в пределах 70-80% а руководитель автосервиса не стесняясь высказывал свое недовольство в мой адрес и особенно сильно в адрес Потапова. Жизнь идет и к следующей зиме надо было что- то делать. На этот раз я был хитрее и рекомендовал опробованный метод – нагрев воды с помощью электричества посредством обычных тенов с КПД =100% . А генератор Потапова использовать, как насос для прокачки горячей воды в отопительной системе. Сказано – сделано. На вход генератора Потапова, последовательно с ним, в контур циркулирования воды был поставлен обычный нагревательный бак с тенами (выпускаемый серийно). Вот тут и начались чудеса. Руководитель автосервиса был в восторге – в самый сильный мороз в ангаре можно было работать раздетым. А я был крайне озадачен, что же я такое рекомендовал что получил такой результат. Опять не стыковка КПД получалось свыше 100%. То слишком мало то слишком много – чушь полная. Стал разбираться – просил запускать комплекс в разных режимах работы, с разными температурами и прочее. (Кстати сказать и генераторы Потапова у отдельных пользователей в начале выдавали свыше 100% КПД делали замер а потом почему то они переставали давать параметры работы как в начале.) После анализа всех данных получалась следующая картина. КПД всего комплекса могла быть свыше 100% при условии что вода из нагревательного бака поступает в генератор Потапова с температурой около 65С При этом вода абсолютно прозрачная (просто горячая). А выходя из генератора Потапова вода приобретает мутновато белый цвет – как будто к воде добавили молоко хотя температура тоже остается около 65С. Такую мутноватую воду можно наблюдать в системе отопления, когда спускают воздушные пробки. Вот с этой мутноватой водой и происходит все не понятное. Мутная вода поступая в батарею и радиатор начинает отдавать тепло окружающей среде, при этом сам радиатор и вода четко имеют температуру 65С и не остывает (хотя визуально видно что радиатор отдает тепловую энергию окружающему пространству). Далее вода поступает в следующий радиатор – радиатор стоит горячий (около 65С), а вода не охлаждается и только поступив в третий радиатор вода сперва приобретает свою прозрачность и после этого начинает линейно остывать во всех следующих радиаторах отопления. Система отопления авто сервиса представляет собой 10 батарей с 18 секциями каждая, включенных последовательно. Вот результаты замеров:

Батарея №1 температура 65С вода мутная как будто с молоком.

Батарея №2 температура 68С вода мутная как будто с молоком.

Батарея №3 температура 65С вода почти прозрачная, но еще мутная.

Батарея №4 температура 60С вода прозрачная.

Батарея №5 температура 55С вода прозрачная.

Батарея №6 температура 50С вода прозрачная

Батарея №7 температура 45С вода прозрачная

Батарея №8 температура 40С вода прозрачная

Батарея №9 температура 35С вода прозрачная

Батарея №10 температура 30С вода прозрачная

После 10-ой батареи, в магистрали отопления стоит кран, для отбора горячей воды на бытовые нужд – помывка автомобилей, душ для работников и прочее. Далее магистраль отопления соединяется с нагревательным баком, к которому подведена еще одна магистраль холодной воды, для питания всей системы водой из артезианской скважины. Из нагревательного бака вода поступает уже нагретой в сам генератор Потапова. Если воду не нагреть до 65С в баке с тенами, а подать в генератор Потапова например с температурой 50С,то на входе будет 50С, а в каждой последующей батарее будет уменьшение на 5 градусов линейно и вода при этом будет прозрачной, и не будет ни какого дополнительного тепла. Выделение «неизвестной» энергии происходит только в воде нагретой до 65С и при этом она должна быть взбученной, взболтанной – иметь мутновато-белый цвет. Генератор Потапова в принципе можно заменить на абсолютно любой взбалтыватель. Ноу-хау ни какого нет. Выделение неизвестной энергии идет не в генераторе Потапова а в системе радиаторов.

Что температура воды в батарее №2 стоит 68С а в батареи №1 65С это не опечатка, действительно наблюдается не большое повышение (на2-3С) температуры воды в батареи хотя по логике вещей вода в батареи должна охлаждаться, а тут происходит даже нагрев без дополнительного подвода энергии. Весь секрет в воде. Вода крайне интересная штука.

Все по порядку. Н2 О всем известная формула, молекула представляет собой

рогатулину с углом в104,27 градусов,точнее при таком написании формулы воды Н2 О это имеется в виду водяной пар. В жидком состоянии вода представляет собой более сложную формулу (Н2 О)8 и (Н2 О)6

за счет того что все водородные связи оказываются замкнуты то вода приобретает свою текучесть. С одной стороны вода это вроде бы жидкость с другой стороны это твердые кристаллы, мельчайших размеров (молекулярного уровня). Полная аналогия с песком – песок, если рассматривать одну песчинку это абсолютно твердое вещество, а если песок рассматривать в большом объеме то это вроде бы текучая (жидкая) субстанция. Зыбучие пески – в них даже можно утонуть как в воде. Молекула воды не плоская, а как бы состоит из 2-х слоев. Это получается из-за того что угол равен 104,27 между атомами водорода, а в угле жидкой молекулы восьми угольника угол равен 135 точно также как в шести угольнике угол равен 120. Это не соответствие 135-104,27 =27,73 градуса в восьмиугольной и 120-104,27=15,73 градуса в шестиугольнике компенсируется выпячиванием одного слоя (четного) над другим слоем (нечетного) и угол все равно остается равным 104,27. Молекула воды (Н2 О)8 представляет собой как бы два квадрата сдвинутые относительно друг друга на 45 градусов, а в углах этих квадратов располагаются молекулы Н2 О. Молекула воды (Н2 О)6 представляет собой как бы два треугольника сдвинутые друг относительно друга на 60 градусов и в углах этих треугольников располагаются молекулы Н2 О. Н2 О- это пар, а жидкая вода это смесь кристаллов молекул (Н2 О)8 и (Н2 О)6 . Есть у воды и еще одно кристаллическое состояние – лед.

Лед имеет форму кубиков, а точнее трапеций, а еще точнее трапеций вперемешку с

треугольниками.

Но и это утверждение не совсем верное, потому что в каждом кубике остаются 2 пары не учтенных водородных связей и эти водородные связи соединяются с другими кубиками, поэтому лед представляет собой, как бы один большой монолитный кристалл. Именно этим объясняется механическая твердость льда. Получается, что каждая в отдельности взятая молекула Н2 О, в кристалле льда, связана со всеми остальными молекулами Н2 О Во всех химических справочниках такая кристаллическая решетка льда называется гексагональной. Химическую формулу льда следовало бы записать так (Н2 О)бесконечность. Под бесконечностью подразумевается очень большое, но конечное число молекул Н2 О входящих в состав конкретного объекта – например айсберга. В грубом приближении можно утверждать, что количество молекул в айсберге равно бесконечности и айсберг это один большой кристалл

Есть у воды еще два кристаллических состояния, но они образуются при очень сверх низких температурах. Настолько низкие температуры можно получить только в лабораторных условиях по этому эти кристаллические решетки остаются уделом изучения специалистов. Сейчас будем говорить только об агрегатных состояниях воды в допустимом диапазоне температур:

Твердое состояние Лед — (Н2 О)бесконечность Устойчивое состояние до 0С

Жидкое состояние Вода -(Н2 О)8 и (Н2 О)6 (смесь) Устойчивое состояние от 0С до 100С

Газообразное состояние Пар – (Н2 О)2 и Н2 О (смесь)Устойчивое состояние от 100С до135С

Газообразное состояние Перегретый пар – Н2 О Устойчивое состояние от 135С и выше

Отдельно надо поговорить еще об одном классе кристаллов воды – снежинках.

Такие твердые водяные кристаллы образуются сразу из газообразной фазы при отрицательной температуре. Причем при разных отрицательных температурах образуются разные снежинки. Центром образования снежинки служит молекула (Н2 О)6 – шести угольник по этому снежинки всегда шестиугольные

Примечание: В советские времена на советских плакатах можно было увидеть снежинки с 5 лучами. Они существуют???? НЕТ Снежинки с пятью лучами художники рисовали не с натуры, а руководствуясь идеологическими рвениями и наказом партии.

Профессор – физик из Калифорнийского университета Кеннет Либбехт задался целью узнать вероятность повторения узора снежинки. Для этого он стал фотографировать снежинки, на специально сконструированном стенде, установленном на джипе. Фотографировал на протяжении 5 лет сделал более 6500 фотографий и что самое поразительное на всех фотографиях снежинки были разные со своим индивидуальным рисунком. Вопрос-« а если в природе две одинаковые снежинки» остается открытым, есть предположение, не без оснований, что двух одинаковых снежинок в природе не существует. Просматривая его каталог снежинок я наткнулся на фотографии крайне интересных кристаллов – очень редких с 12 лучами, такие снежинки приходятся приблизительно одна на 500 штук. Выдвигаю предположение, что в природе существует еще одна разновидность жидких кристаллов воды (Н2 О)12 о таком состоянии воды ни в одной литературе не упоминается. Но если есть фотография, то это просто обязано быть.

Теперь поговорим о кристаллической решетке.

Практически все вещества обладают кристаллической решеткой – это известно всем из курса школьной программы. Чтобы разрушить кристаллическую решетку надо затратить энергию – этот процесс называется плавление. Процесс обратимый – при разрушении кристаллической решетки (плавление) идет поглощение тепловой энергии при создании решетки (затвердевании) идет выделение энергии. Вот именно по этому у многих веществ с ярко выраженной кристаллической решеткой температура плавления указывается от и до, нет конкретного числа. Например сера. В этой статье речь идет о воде по этому будем говорить о воде. В физике удельная теплота плавления обозначается L и меряется Джоуль на килограмм. Для воды (льда) составляет 33,7*100000 джоулей на килограмм (литр). О-го-го сколько. А как же быть с жидкой водой. Ведь она тоже состоит из кристаллов двух типов (Н2 О)8 и (Н2 О)6 . Если есть кристаллы значит есть скрытая тепловая энергия. А не эта ли тепловая энергия и выделяется в генераторах Потапова и подобных. Предполагаю, что при температуре в 65С образуются условия перестроения одной кристаллической решетки воды в другой тип решётки, и сопровождается этот процесс выделением тепловой энергии.

Реакция перестроения записывается следующим видом.

жидкость T=65С жидкость пар энергия

(Н2 О)8 = (Н2 О)6 + 2 Н2 О +Т

из этой записи становится хорошо видно, почему вода приобретает мутноватый вид – в воде образуются пар — мелко дисперсный на уровне молекул. Этот пар конденсируется в нутре воды, и этот процесс (конденсации) идет с выделением тепловой энергии. После конденсации образуется (Н2 О)6 . Сперва отдельные молекулы Н2 О образуют пары а затем образуются сложные молекулы, то есть сперва перегретый пар превращается просто в пар а затем в жидкость.

2 Н2 О = (Н2 О)2 + Т

3 (Н2 О)2 = (Н2 О)6 + Т

Инициатором этого процесса (разрушение кристаллической решетки) и является взбалтывание, взбучивание воды в генераторе Потапова. Точно также, как нитроглицерин надо ударить для инициации бурной химической реакции — взрыва. Для перестроения одного типа кристаллической решетки воды в другой тип требуется два условия – температура 65С и взбалтывание (взбучивание) воды. При выполнении этих условий идет перестроение кристаллической решетки с выделением тепловой энергии, которая воспринимается потребителем как КПД свыше 100%.

Становится понятно почему генераторы Потапова, когда заправлены свежей водой, могут давать КПД свыше 100%. Так же понятно почему в автосервисе наблюдается завышенное выделение тепловой энергии – в мастерской постоянно идет слив воды, из отопительной системы, для мытья машин и постоянно идет подпитка системы свежей водой из артезианской скважины.

Получается, что система отопления не замкнутая, а разомкнутая с точки зрения энергии.

Так откуда же берется «дармовая» энергия. А энергия берется от нашего солнышка. Сперва солнышко плавит снежинки и лед образуется талая вода (Н2 О)6

Жидкость Т=от0 до40 испарения

3 (Н2 О)6 = 2 (Н2 О)8 + 2 (Н2 О)2 – Т

Идет поглощение тепловой энергии из окружающей среды. Когда человек выходит мокрый из речки и если на него еще дует ветерок – довольно холодно, это и есть поглощение энергии воды из окружающей среды путем испарения.

Часть молекул Н2 О улетает в качестве пара, а часть молекул Н2 О остается в талой воде в которой образуется (Н2 О)8 по мере испарения, в воде, все больше образуется скрытой энергии.

получается уже не талая вода а смесь двух видов (Н2 О)8 и(Н2 О)6 в кристаллической решетки одной из них спрятана тепловая энергия.

Далее такая вода (смесь) (Н2 О)8 и(Н2 О)6 поступает в систему отопления авто мастерской, где вода (Н2 О)8 преобразуется в (Н2 О)6 с выделением тепловой энергии из-за разрушения (перестроения) кристаллической решетки. Вода с течением времени, в системе отопления, становится (Н2 О)6. Далее вода расходуется на помывку автомобилей и идет в сток. В стоке она испаряется.

3(Н2 О)6 = 2(Н2 О)8 + 2 Н2 О – Т (тепловая энергия окружающей среды)

Процесс замыкается. В этом процессе участвует тепловая энергия окружающей среды.

И нет ни чего удивительного, что в автомастерскую поступает скрытая тепловая энергия в виде запасенной энергии в кристаллической решетки.

Как бы красиво не выглядела теория вершина всего — эксперимент.

Долго думал, как подтвердить или опровергнуть свои догадки с помощью эксперимента.

И решил, раз один вид воды должен поглощать энергию окружающей среды, значит данная вода должна испаряться медленней. В автомастерской попросил дать образцы воды, но так что бы вода как можно больше раз про циркулировала по контуру отопления. Работники авто сервиса сказали, что ночью не идет слива воды и утро это самое подходящее время для взятия образцов. Сказано – сделано.

Вот вода совершенно ни чем не отличается от другой ни на вкус, ни на цвет.

Ее налил в стакан. Рядом налил стакан с водопроводной водой и рядом поставил стакан с талой водой полученной из снега. Все три стакана наполнены одинаково, стоят рядом. Для чистоты эксперимента наполнил точно также еще 3 стакана и поставил в другую комнату, что бы эксперимент шел в разных комнатах.

Через неделю видно что в стакане №1 и№3 испарение воды идет медленней, чем в стаканах№2 через две недели скорость испарения воды выравнивается. Почему скорость испарения воды с течением времени выравнивается внимательный читатель уже наверное догадался.

И последнее что бы сделать качественную оценку, а сколько же скрытой энергии находится в воде, пришлось покопаться в учебниках. Точно сказать не возможно по причине того, что в этой области нет совершенно ни каких данных, но приблизительно можно сделать оценку. Что бы нагреть литр воды на 1 градус надо затратить 80кило калорий. Отталкиваясь от этого и аппроксимируя все данные можно утверждать, что «дармовой» энергии получается где-то около 36 тысяч килокалорий.

Приблизительно 1-2 литра бензина — за один цикл циркулирования 300 литров воды.

Или по другому в 100 литрах воды содержится скрытой энергии как в 0,5 литре бензина, при сжигании. Пол литра бензина вроде бы не много на такое количество воды, но здесь надо обратить внимание на то, что это возобновляемый источник энергии. Бензин сожгли и все, его больше нет. А вот в воде получив энергию за счет перекристаллизации можно слить отработанную воду, подождать, когда наше солнышко испарит эту воду, произойдет восстановление воды. И эта же вода опять годится для перекристаллизации с выделением дополнительной тепловой энергии.

Блеск и нищета генераторов Потапова.

Принимая во внимание что на принципе перекристаллизации воды можно изготавливать тепловые системы отопления помещений, на базе существующих тепловых сетей, без особых капитальных вложений становится очень заманчиво и привлекательно использование этого принципа. Как использовать этот принцип. А для использования этого принципа надо создать, в тепловых сетях, два условия. Первое – температура 65 С и второе — некое устройство которое взбучивает воду. Много раз я наблюдал как из под горячего крана начинает идти вода с примесью пара, мутновато-белого цвета. Вода перестает быть белой когда кран немного открыт и когда кран полностью открыт. Данный эффект имеет место только при полу закрытом кране. Предлагаю, в том месте, где находится ввод горячей воды для отапливания помещений, в нутрии трубы ставить шайбу, поперек напора воды, что бы создать перепад давления и вызвать эффект замутнения воды а точнее образование в ней пара. Собственно говоря эта шайба и будет выполнять роль генератора Потапова. Тепловые отопительные системы имеют очень низкий КПД из-за того что есть большие потери тепла при прокачки горячей воды к потребителю. Такой взбалтователь (шайбу) надо ставить не на тепло станции а непосредственно у потребителя (у ввода системы отопления) прямо в квартире. Тем самым минимизировать потери тепла в тепловых сетях, и повышать КПД в целом. Когда вода пройдет 2-3 круга циркулирования ее надо заменять, то есть надо сливать и добавлять в систему свежий тепло носитель. Для этого на тепло станциях надо поставить теплообменник. В теплообменники вода идущая от потребителей (использованная) будет отдавать остаток тепла свежий воде, которая будет постоянно подкачиваться в систему. Или использовать, теплую воду, из обратки на какие ни будь технологические нужды. Таким образом, можно без особых капитальных вложений модернизировать существующие тепло сети и повысить их эффективность приблизительно на 10-20%.

А если оправдаются обещания и заверения господина Потапова (в чем я очень сильно сомневаюсь) то эффективность увеличится на все 40%.

Дополнение.

Существует техническое изделие – ультразвуковая стиральная машинка. Представляет собой ультразвуковой излучатель с маломощным блоком питания. Суть стиральной машинки – излучатель опускается в воду с замоченным бельем, и белье якобы отстирывается без применения моющих средств. Попробовал – ни чего не получается, но когда стал применять воду с температурой около 65 градусов, все стало получатся. Вода стала мутнеть, вокруг ультразвукового излучателя и белье, действительно, стало отстирываться без применения моющих средств. Предполагаю, что ультра звук здесь не причем, просто он (ультра звук) вызывает реакцию перекристаллизации воды с образованием пара, который в свою очередь и разрушает загрязнение белья. Как тут не вспомнить американский опыт – там установка так и называется «Поющая», при работе издает громкий свистящий звук. Что-то здесь все связано.

Эта глава написана после большого промежутка времени после написания статьи. Автор нашел еще один температурный диапазон когда вода выделяет скрытую энергию, уже не тепловую а механическую. Пришлось дополнять статью этой второй главой.

Все по порядку. Еще до первой мировой войны в самом начале 20 века произошел курьезный случай. В Европе стали появляться фальшивые металлические монеты высокого качества чеканки. Анализ этих фальшивых монет показал что они изготовлены на прессе который может развивать усилие более 25 тонн. Фальшивомонетчики и до этого использовали разные приспособления для штамповки монет, но все эти приспособления – тески, донкраты, рычаги и прочее устройства не давали высокого качества оттиска как на гидравлических прессах высокого давления. Тайная полиция сбилась с ног, ища этого фальшивомонетчика. Ориентиром для поиска, специалисты по монетам, дали наличие громадного гидравлического пресса – величиной с двух этажный дом, паровая машина и большое потребление угля. Тайная полиция ни как не могла понять, как можно спрятать такую громадину и главное куда. Сколько веревочки не виться все равно конец будет. Фальшивомонетчика поймали. Полицейские и специалисты были удивлены и крайне озадачены – гидравлического пресса не было, а было некое устройство которое можно было спрятать в кармане, и это устройство могло развивать усилие как гидравлический пресс, более 25 тонн, при этом, не потребляя ни какой энергии. Устройство представляло собой стальную толстую квадратную пластину, в которой прорезано квадратное отверстие. Примитивный поршень и плунжеры с орлом и решкой. В поршень заливалась вода, причем очень мало – пол стакана воды. Затем все это устройство ставилось за окно на мороз, на улицу. Вода в поршне замерзала, превращаясь в лед, увеличивала объем – поршень двигался и штамповал монету. Поршень двигался медленно (пропорционально замерзанию воды), но с большим усилием, качество оттиска получалось высочайшего качества.

Тайная полиция засекретила это дело – побоялась, что монеты начнут штамповать, таким способом в каждой подворотне. Все стало известно в середине 20 века, когда появились более совершенные методы защиты денег и монет.

У нас в стране монет ни кто не штампует, но эффект производимый заморозкой воды в системах отопления известен всем — головная боль все коммунальных служб. То там, то здесь происходит заморозка отопительных систем, после этого отопительная система даже не подлежит ремонту – ее надо полностью менять. Стальные трубы разрывает так как будто в них произошел взрыв, создается впечатление, что это не сталь, а бумага.

Лично приходилось видеть разорванные стальные трубы и раскрошенные чугунные радиаторы, после такой аварии. С точки зрения физики все понятно – вода имеет одну плотность, лед другую. Вода, превращаясь в лед, занимает больший объем – расширяясь, разрывает стальные трубы или штампует монеты. А вот с точки зрения энергии чушь полная. Вода отдает свою тепловую энергию (охлаждается) окружающему пространству, при этом совершает механическую работу. Как такое может быть отдавая энергию (тепловую) происходит еще большее выделение энергии (механической)? Что КПД больше 100%?? Во всех учебниках физики написано, что тепловую энергию можно перевести в механическую а механическую в тепловую, то есть эти энергии связаны между собой. Возникает вопрос, а откуда берется дармовая (лишняя) энергия, да еще столько, что достаточно раскрошить чугунный радиатор. Предполагаю что эффект выделения скрытой энергии из воды путем перестроения кристаллической решетки существует в двух температурных диапазонах. Первый температурный диапазон в приделах 0 градусов идет преобразование скрытой энергии кристаллической решетки в механическую. И второй температурный диапазон в приделах 63-65 градусов преобразование скрытой энергии кристаллической решетки в тепловую, об этом температурном диапазоне говорилось в первой главе данный статьи.

Фальшивомонетчики первыми создали техническое устройство извлечения скрытой энергии из воды, методом изменения кристаллической решетки, в добавок это устройство не потребляло ни какой энергии а только отдавало тепловую энергию (охлаждалось) и производила механическую работу, да еще столько что можно сравнить с работой гидравлического пресса высокого давления. Это было сделано более 100 лет тому назад, что касается господина Потапова, который тоже, похоже, изготавливает устройства извлечения скрытой энергии из кристаллической решетки, то здесь надо сказать прямо, что все процессы, которые происходят в его устройствах, до конца не понятны и самому создателю – господину Потапову. Такой категорический вывод, дает мне право делать на основании того, что я лично общался с этим человеком. Кристаллическая решетка это довольно сложная тема, хотя на первый взгляд, кажется простой. Следует упомянуть и о алмазе или графите, а точнее об одном и том же веществе — углероде. С одной кристаллической решетки это невероятно твердое вещество с другой кристаллической решеткой это мягкое вещество. А не подойти ли к вопросу выращивания алмазов с точки зрения циркуляции энергии, природа каким то образом создает эти камни. Вполне возможно, что для выращивания алмаза и не требуются ни каких экзотических условий (давление, температура) а просто надо создать условия циркуляции (превращения) энергии и вещество само будет менять кристаллические решетки.

Хорошо известные классические способы генерации электроэнергии имеют один существенный недостаток, заключающийся в их сильной зависимости от самого источника. И даже так называемые «альтернативные» подходы, позволяющие извлекать энергию из таких природных ресурсов, как ветер или солнечные лучи, не лишены этого недостатка (смотрите фото ниже).

К тому же традиционно используемые ресурсы (уголь, торф и другие горючие материалы) рано или поздно заканчиваются, что вынуждает разработчиков искать новые варианты получения энергии. Один из таких подходов предполагает разработку специального устройства, которое в кругу специалистов называется генератор с самозапиткой.

Принцип действия

К категории генераторов, в которых используется самозапитка, принято относить следующие наименования оригинальных конструкций, в последнее время все чаще упоминающихся на страничках Интернета:

  • Различные модификации генератора свободной энергии Тесла;
  • Источники энергии вакуумного и магнитного поля;
  • Так называемые «радиантные» генераторы.

Среди любителей нестандартных решений большое внимание уделяется известным схемным решениям великого сербского учёного Николы Тесла. Вдохновившись предложенным им неклассическим подходом к использованию возможностей э/магнитного поля (так называемой «свободной» энергии) естествоиспытатели ищут и находят всё новые решения.

Известные устройства, которые, согласно общепринятой классификации, относятся к подобным источникам, подразделяются на следующие типы:

  • Уже упоминавшиеся ранее радиантные генераторы и подобные им;
  • Блокинг система в комплекте с постоянными магнитами или трансгенератор (с его внешним видом можно ознакомиться на рисунке ниже);

  • Так называемые «тепловые насосы», работающие за счет разницы температур;
  • Вихревое устройство особой конструкции (другое название – генератор Потапова);
  • Системы электролиза водных растворов без подкачки энергии.

Из всех этих устройств обоснование принципа действия существует лишь для тепловых насосов, которые не являются генераторами в полном смысле этого слова.

Важно! Наличие объяснения сути их работы связано с тем, что технология использования разницы температур давно применяется на практике в ряде других разработок.

Гораздо более интересным представляется знакомство с системой, работающей по принципу радиантного преобразования.

Обзор радиантных генераторов

Приборы этого типа работают подобно электростатическим преобразователям, с одним небольшим отличием. Оно заключается в том, что полученная извне энергия не вся расходуется на внутренние нужды, а частично отдаётся обратно, в питающую цепь.

К числу наиболее известных систем, работающих на радиантной энергии, следует отнести:

  • Трансмиттер-усилитель Тесла;
  • Классический генератор се с расширением до блокинг системы бтг;
  • Устройство, названное по имени изобретателя Т. Генри Моррея.

Все новые генераторы, придумываемые поклонниками альтернативных способов добычи энергии, способны работать по тому же принципу, что и эти приборы. Рассмотрим каждый из них более подробно.

Так называемый «трансмиттер-усилитель» изготавливается в виде плоского трансформатора, подключаемого к внешнему источнику энергии посредством сборки из разрядников и электролитических конденсаторов. Его особенностью является способность генерировать стоячие волны особой формы э/магнитной энергии (её называют радиантной), которая распространяется в окружающей среде и практически не ослабевает с расстоянием.

По замыслу самого изобретателя такое устройство должно было использоваться для беспроводной передачи электроэнергии на сверхдальние расстояния. К большому сожалению, Тесла не удалось до конца осуществить свои замыслы и эксперименты, а его расчёты и схемы были частично утеряны, а некоторые позже засекречены. Схема генератора-трансмиттера приводится на фото ниже.

Любые копирования идей Тесла не приводили к нужному результату, а все собранные по этому принципу установки не обеспечивали требуемой эффективности. Единственно, чего удалось добиться при этом – изготовить своими руками устройство с большим коэффициентом трансформации. Собранное изделие позволяло получать на выходе напряжение порядка сотен тысяч вольт при минимально подводимой к нему электроэнергии.

Генераторы СЕ (блокинги) и Моррея

Работа генераторов се также основана на радиантном принципе преобразования энергии, получаемой в режиме автоколебаний и не требующей постоянной подкачки. После его запуска подпитка осуществляется за счёт выходного напряжения самого генератора и естественного магнитного поля.

Если запуск изготовленного своими руками изделия осуществлялся от АКБ, то при его функционировании избыток энергии может быть использован для подзарядки этого аккумулятора (рисунок ниже).

Одной из разновидностей блокинг генераторов с самозапиткой является трансгенератор, также использующий в своей работе магнитное поле Земли. Последнее воздействует на обмотки его трансформатора, а само это устройство достаточно просто для того, чтобы можно было собрать его своими руками.

За счёт совмещения физических процессов, наблюдаемых в системах се и устройствах на постоянных магнитах, удается получить блокинг-генераторы (фото ниже).

Ещё одна разновидность рассматриваемых здесь устройств относится к старейшим вариантам схемы генерации свободной энергии. Это генератор Моррея, который удается собрать посредством специальной схемы с включенными определённым образом диодами и конденсаторами.

Дополнительная информация. Во времена его изобретения конденсаторы по своей конструкции напоминали модные тогда электролампы, однако, в отличие от них, не нуждались в подогреве электродов.

Вихревые устройства

Рассказывая о свободных источниках электроэнергии, обязательно нужно коснуться особых систем, способных вырабатывать тепло с КПД более 100%. Под этим устройством подразумевается уже упоминавшийся ранее генератор Потапова.

Его действие основано на взаимном вихревом влиянии соосно действующих жидкостных потоков. Принцип его работы хорошо иллюстрирует следующий рисунок (смотрите фото ниже).

Для создания нужного напора воды используется центробежный насос, направляющий её через патрубок (2). В процессе своего движения по спирали у стенок корпуса (1) поток достигает отражающего конуса (4) и разделяется после него на две независимые части.

При этом подогретая внешняя часть потока возвращается обратно к насосу, а его внутренняя составляющая отражается от конуса с образованием вихря меньшего размера. Это новое завихрение протекает сквозь внутреннюю полость первичного вихревого образования, а затем поступает в выходное отверстие патрубка (3) с подключенной к ней отопительной системой.

Таким образом, теплопередача осуществляется за счет обмена энергиями завихрений, а полное отсутствие механических подвижных узлов обеспечивает ей очень высокий КПД. Изготовить такой преобразователь своими руками довольно сложно, т. к. не у всех имеется специальное оборудование для расточки металла.

В современных образцах тепловых генераторов, работающих по этому принципу, пытаются использовать явление так называемой «кавитации». Под ней понимается процесс формирования в жидкости воздушных пузырей парообразного вида и их последующего схлопывания. Всё это сопровождается бурным выделением значительного количества тепловой субстанции.

Электролиз воды

В тех случаях, когда речь идёт об электрогенераторах нового типа, не стоит забывать и о таком перспективном направлении, каким является изучение электролиза жидкостей без использования сторонних источников. Интерес к этой тематике объясняется тем, что вода по своей сути является натуральным обратимым источником. Это следует из устройства её молекулы, которая, как известно, содержит в своём составе два атома водорода и один – кислорода.

При электролизе водной массы образуются соответствующие газы, используемые в качестве полноценных заменителей традиционных углеводородов. Дело в том, что при взаимодействии газообразных составов вновь получается молекула воды, плюс попутно выделяется значительное количество тепла. Сложность этого способа состоит в том, чтобы обеспечить подвод необходимого количества энергии к электролизной ванне, достаточного для поддержания реакции разложения.

Добиться этого удается, если своими руками менять форму и расположение используемых электродных контактов, а также состав специального катализатора.

Если при этом учитывается возможность воздействия магнитного поля, то удается добиться существенного снижения расходуемой на электролиз мощности.

Обратите внимание! Уже осуществлены несколько подобных опытов, доказывающих, что, в принципе, разложить воду на компоненты (без дополнительной подкачки энергии) возможно.

Дело за малым, – освоить механизм, который собирает атомы в новую структуру (вновь синтезирует молекулу воды).

Ещё один вид преобразований энергии связан с ядерными реакциями, которые проводить в домашних условиях по понятным причинам невозможно. К тому же они нуждаются в огромных материальных и энергетических ресурсах, достаточных для инициации процесса распада ядер.

Эти реакции организуются в специальных реакторах и ускорителях, где создаются условия с высоким градиентом магнитного поля. Проблема, с которой сталкиваются увлеченные холодным синтезом ядер (ХЯС) специалисты, заключается в поиске способов поддержания ядерных реакций без дополнительного подвода сторонних энергий.

В заключение отметим, что проблема рассмотренных выше устройств и систем заключается в наличии сильного противодействия со стороны корпоративных сил, благополучие которых основано на традиционных углеводородах и энергии атома. Исследования ХЯС, в частности, объявлены ошибочным направлением, вследствие чего всякое их централизованное финансирование полностью прекращено. Сегодня изучение принципов получения свободных энергий поддерживается только силами энтузиастов.

Видео

Вихревой теплогенератор Потапова, или же сокращенно ВТП, был разработан специально для того, чтобы получать тепловую энергию с помощью всего лишь электрического двигателя и насоса. Такое устройство используется преимущественно в качестве экономного источника тепла.

Сегодня мы рассмотрим особенности конструкции этого устройства, а также как изготовить вихревой теплогенератор своими руками.

Принцип работы

Работает генератор следующим образом. Вода (или любой другой используемый теплоноситель) попадает в кавитатор. Электродвигатель затем раскручивает кавитатор, в котором при этом схлопываются пузырьки – это и есть кавитация, отсюда и название элемента. Так вся жидкость, которая в него попадает, начинает греться.

Электроэнергия, требуемая для работы генератора, тратится на три вещи:

  • На образование звуковых колебаний.
  • На то, чтобы преодолеть силу трения в устройстве.
  • На нагревание жидкости.

При этом как утверждают создатели устройства, в частности, сам молдаванин Потапов, для работы используется возобновляемая энергия, хотя не совсем понятно, откуда она появляется. Как бы то ни было, дополнительного излучения не наблюдается, следовательно, можно говорить чуть ли не о стопроцентном КПД, ведь почти все энергия тратится на нагрев теплоносителя. Но это в теории.

Для чего используется?

Приведем небольшой пример. В стране есть масса предприятий, которые по тем или иным причинам не могут позволить себе газовое отопление: или магистрали нет неподалеку, или еще что-то. Тогда что остается? Обогреть электричеством, но тарифы на такого рода отопление могут ужаснуть. Вот тут и выручает чудо-прибор Потапова. При его использовании затраты на электроэнергию останутся теми же, КПД, разумеется, тоже, так как больше сотни ему все равно не быть, а вот КПД в плане финансовом будет составлять от 200% до 300%.

Получается, что эффективность вихревого генератора – 1.2-1.5.

Необходимые инструменты

Что же, пора приступать к самостоятельному изготовлению генератора. Давайте посмотрим, что нам потребуется:

  • Шлифовальная машинка угловая, или турбинка;
  • Железный уголок;
  • Сварка;
  • Болты, гайки;
  • Электрическая дрель;
  • Ключи 12-13;
  • Сверла к дрели;
  • Краска, кисточка и грунтовка.

Технология изготовления. Двигатель

Обратите внимание! Ввиду того, что не существует никакой информации касаемо характеристик устройства с точки зрения мощности насоса, все параметры, приведенные ниже, будут примерными.

Читайте так же про установку водяного насоса для отопления —

Самый простой вариант изготовить вихревой теплогенератор своими руками – использовать в работе стандартные детали. Нам может подойти практически любой двигатель, чем большую мощность он будет иметь, тем больше теплоносителя сможет нагреть. При выборе электродвигателя следует учесть, в первую очередь, напряжение в вашем доме. Следующий этап – создание станины под двигатель. Станина представляет собой обычный железный каркас, для которого лучше использовать железные уголки. Размеров никаких мы не скажем, так как они зависят от габаритов двигателя и определяются на месте.

  1. Нарезаем турбинкой угольники необходимой длины. Свариваем из них квадратную конструкцию таких размеров, чтобы все элементы туда поместились.
  2. Вырезаем дополнительный уголок и привариваем его к каркасу поперек таким образом, чтобы к нему можно было прикрепить электродвигатель.
  3. Красим станину, ждем, пока высохнет.
  4. Сверлим отверстия для крепежа, закрепляем электродвигатель.

Устанавливаем насос

Далее мы должны выбрать «правильный» водяной насос. Ассортимент этих инструментов сегодня настолько широк, что можно найти себе модель любой силы и габаритов. Нам же нужно обращать внимание лишь на две вещи:

  • Сможет ли двигатель раскрутить этот насос;
  • Является ли он (насос) центробежным.

У вихревого генератора корпус представляет собой цилиндр, закрытый с обеих сторон. По боками должны находиться сквозные отверстия, посредством которых устройство будет подсоединяться к отопительной системе. Но главная особенность конструкции – внутри корпуса: сразу возле входного отверстия размещен жиклер. Отверстие жиклера должно подбираться чисто индивидуально.

Обратите внимание! Желательно при этом, чтобы отверстие жиклера было вдвое меньше, чем 1/4 общего диаметра цилиндра. Если отверстие будет меньшим, то вода не сможет проходить сквозь него в необходимом количестве и насос начнет греться. Более того, внутренние элементы начнут разрушаться кавитацией.

Для изготовления корпуса нам потребуются следующие инструменты:

  1. Железная труба с толстыми стенками диаметром около 10 см;
  2. Муфты для соединения;
  3. Сварка;
  4. Несколько электродов;
  5. Турбинка;
  6. Пара патрубков, в которых проделана резьба;
  7. Электрическая дрель;
  8. Сверла;
  9. Ключ разводной.

Теперь – непосредственно к процессу изготовления.

  1. Для начала отрезаем кусок трубы длиной порядка 50-60 см и делаем на ее поверхности внешнюю проточку примерно на пол толщины, 2-2.5 см. нарезаем резьбу.
  2. Берем еще два куска этой же трубы, длиной по 5 см каждый, и делаем из них пару колец.
  3. Затем берем металлический лист с такой же толщиной, какая и у трубы, вырезаем из нее своеобразные крышки, привариваем их там, где резьба не делалась.
  4. По центру крышек делаем два отверстия – одно из них по окружности патрубка, второе – по окружности жиклера. Внутри крышки рядом с жиклером просверливаем фаску таким образом, чтобы получилась форсунка.
  5. Подключаем генератор к отопительной системе. патрубок возле форсунки подсоединяем к насосу, но только к тому отверстию, откуда под напором поступает вода. Второй патрубок соединяем с входом в отопительную систему, выход же необходимо подсоединить к входу насоса.

Насос будет создавать давление, которое, воздействуя на воду, заставит ее проходить через форсунку нашей конструкции. В специальной камере вода будет перегреваться ввиду активного перемешивания, после чего подается непосредственно в отопительный контур. Дабы можно было регулировать температуру, вихревой теплогенератор своими руками должен оснащаться специальным запирающим устройством, располагающимся рядом с патрубком. Если несколько прикрыть запор, то конструкция будет дольше перегонять воду по камере, следовательно, из-за этого температура поднимется. Таким образом и работает такого рода обогреватель.

Про другие способы альтернативного отопления

Повышаем производительность

Насос теряет тепловую энергию, что является главным недостатком вихревого генератора (по крайней мере, в описанном своем варианте). Поэтому насос лучше окунуть в специальную водяную рубашку, дабы исходящее от него тепло также приносило пользу.

Диаметр этой рубашки должен быть несколько больше, чем у насоса. Можем использовать для этого по традиции обрезок трубы, а можно из листовой стали сделать параллелепипед. Его габариты должны быть такими, чтобы все элементы генератора свободно в него помещались, а толщина – чтобы выдерживал рабочее давление системы.

Помимо того, снизить теплопотери можно установкой специального жестяного кожуха вокруг устройства. Изолятором может стать любой такого рода материал, который способен выдерживать рабочую температуру.

  1. Собираем следующую конструкцию: теплогенератор, насос и соединяющий патрубок.
  2. Измеряем, каковы их габариты, и подбираем трубу нужного диаметра – так, чтобы все детали легко в ней поместились.
  3. Изготавливаем крышки для обеих сторон.
  4. Далее заботимся о том, чтобы детали внутри трубы были жестко закреплены, а также о том, чтоб насос сумел прокачивать сквозь себя теплоноситель.
  5. Просверливаем выходное отверстие, крепим на него патрубок.

Обратите внимание! Необходимо поместить насос максимально близко к данному отверстию!

На втором конце трубы мы привариваем фланец, посредством которого будет закреплена крышка на прокладке-уплотнителе. Можно оборудовать внутри корпуса каркас, чтобы было проще устанавливать все элементы. Собираем устройство, проверяем, насколько прочны крепления, проверяем герметичность, вставляем в корпус и закрываем.

Затем подключаем вихревой теплогенератор ко всем потребителям, проверяем его еще раз на предмет герметичности. Если ничего не течет, то можно активировать насос. При открытии/закрытии крана на входе регулируем температуру.

Возможно вас так же заинтересует статья о том как сделать солнечный коллектор

Утепляем ВТП

Прежде всего, одеваем кожух. Берем для этого лист алюминия или нержавейки и вырезаем пару прямоугольников. Загибать их лучше по такой трубе, у которой больший диаметра, чтобы в итоге образовался цилиндр. Далее следуем инструкции.

  1. Скрепляем половинки между собой с помощью специального замка, используемого для соединения водопроводных труб.
  2. Делаем пару крышек для кожуха, но не забываем о том,/ что в них должны оставаться дырки для подключения.
  3. Обматываем устройство термоизоляционным материалом.
  4. Помещаем генератор в кожух и плотно закрываем обе крышки.

Есть и другой способ увеличения производительности, но для этого нужно знать, как же именно работает чудо-прибор Попова, КПД которого может превышать (не доказано и не объяснено) 100%. Мы то с вами уже знаем, как он работает, поэтому может приступать непосредственно к усовершенствованию генератора.

Гаситель вихрей

Да, мы сделаем приспособление с таким загадочным названием – гаситель вихрей. Он будет состоять из расположенных вдоль пластин, помещенный внутри обоих колец.

Посмотрим, что нам потребуется для работы.

  • Сварка.
  • Турбинка.
  • Лист стали.
  • Труба с толстыми стенками.

Труба должна быть меньшей, чем теплогенератор. Делаем из нее два кольца, примерно по 5 см каждое. Из листа вырезаем несколько полосок одного размера. Их длина должна составлять 1/4 длины корпуса устройства, а ширина такой, чтоб после сборки осталось свободное пространство внутри.

  1. Вставляем в тиски пластинку, навешиваем на одном ее конце металлические кольца и свариваем их с пластиной.
  2. Вынимаем пластину из зажима и поворачиваем другой стороной. Берем вторую пластину и помещаем ее в кольца таким образом, чтобы обе пластины размещались параллельно. Аналогичным образом закрепляем все оставшиеся пластины.
  3. Собираем вихревой генератор своими руками, а полученную конструкцию устанавливаем напротив сопла.

Отметим, что поле совершенствования устройства практически безгранично. К примеру, вместо указанных выше пластин мы можем применить проволоку из стали, скрутив ее предварительно в виде клубка. Кроме того, мы можем проделать дырки на пластинах различного размера. Конечно, обо всем этом нигде не упоминается, но кто сказал, что вы не можете использовать данные усовершенствования?

В заключение

И в качестве заключения – несколько дельных советов. Во-первых, все поверхности желательно защитить окрашиванием. Во-вторых, все внутренние детали стоит делать из толстых материалов, так как он (детали) будут постоянно находиться в достаточно агрессивной среде. И в-третьих, позаботьтесь о нескольких запасных крышках, имеющих разного размера отверстия. В дальнейшем вам будет подбирать необходимый диаметр, дабы добиться максимальной производительности устройства.

Отопление дома, гаража, офиса, торговых площадей – вопрос, решать который надо сразу после того, как помещение построено. И не важно, какое время года на улице. Зима всё равно придёт. Так что побеспокоиться о том, чтобы внутри было тепло необходимо заранее. Тем, кто покупает квартиру в многоэтажном доме, волноваться не о чем – строители уже всё сделали. А вот тем, кто строит свой дом, оборудует гараж или отдельно стоящее небольшое здание, придётся выбирать, какую систему отопления устанавливать. И одним из решений будет вихревой теплогенератор.

Сепарация воздуха, иначе говоря, разделение его на холодную и горячую фракции в вихревой струе – явление, которое и легло в основу вихревого теплогенератора, было открыто около ста лет назад. И как это часто бывает, лет 50 никто не мог придумать, как его использовать. Так называемую вихревую трубу модернизировали самыми разными способами и пытались пристроить практически во все виды человеческой деятельности. Однако везде она уступала и по цене и по КПД уже имеющимся приборам. Пока русский учёный Меркулов не придумал запустить внутрь воду, не установил, что на выходе температура повышается в несколько раз и не назвал этот процесс кавитацией. Цена прибора уменьшилась не намного, а вот коэффициент полезного действия стал практически стопроцентным.

Принцип действия


Так что же такое эта загадочная и доступная кавитация? А ведь всё довольно просто. Во время прохождения через вихрь, в воде образуется множество пузырьков, которые в свою очередь лопаются, высвобождая некое количество энергии. Эта энергия и нагревает воду. Количество пузырьков подсчёту не поддаётся, а вот температуру воды вихревой кавитационный теплогенератор может повысить до 200 градусов. Не воспользоваться этим было бы глупо.

Два основных вида

Несмотря на то и дело появляющиеся сообщения о том, что кто-то где-то смастерил уникальный вихревой теплогенератор своими руками такой мощности, что можно отапливать целый город, в большинстве случаев это обычные газетные утки, не имеющие под собой никакой фактической основы. Когда-нибудь, возможно, это случиться, а пока принцип работы этого прибора можно использовать только двумя способами.

Роторный теплогенератор. Корпус центробежного насоса в этом случае будет выступать в качестве статора. В зависимости от мощности по всей поверхности ротора сверлят отверстия определённого диаметра. Именно за счёт их и появляются те самые пузырьки, разрушение которых и нагревает воду. Достоинство у такого теплогенератор только одно. Он намного производительнее. А вот недостатков существенно больше.

  • Шумит такая установка очень сильно.
  • Изношенность деталей повышенная.
  • Требует частой замены уплотнителей и сальников.
  • Слишком дорогое обслуживание.

Статический теплогенератор. В отличие от предыдущей версии, здесь ничего не вращается, а процесс кавитации происходит естественным путём. Работает только насос. И список достоинств и недостатков принимает резко противоположное направление.

  • Прибор может работать при низком давлении.
  • Разница температур на холодном и горячих концах довольно велика.
  • Абсолютно безопасен, в каком бы месте не использовался.
  • Быстрый нагрев.
  • КПД 90 % и выше.
  • Возможность использования, как для обогрева, так и для охлаждения.

Единственным недостатком статического ВТГ можно считать дороговизну оборудования и связанную с этим довольно долгую окупаемость.

Как собрать теплогенератор


При всех этих научных терминах, которые могут напугать незнакомого с физикой человека, смастерить в домашних условиях ВТГ вполне возможно. Повозиться, конечно, придётся, но если всё сделать правильно и качественно, можно будет наслаждаться теплом в любое время.

И начать, как и в любом другом деле, придётся с подготовки материалов и инструментов. Понадобятся:

  • Сварочный аппарат.
  • Шлифмашинка.
  • Электродрель.
  • Набор гаечных ключей.
  • Набор свёрл.
  • Металлический уголок.
  • Болты и гайки.
  • Толстая металлическая труба.
  • Два патрубка с резьбой.
  • Соединительные муфты.
  • Электродвигатель.
  • Центробежный насос.
  • Жиклёр.

Вот теперь можно приступать непосредственно к работе.

Устанавливаем двигатель

Электродвигатель, подобранный в соответствии с имеющимся напряжением, устанавливается на станину, сваренную или собранную с помощью болтов, из уголка. Общий размер станины вычисляется таким образом, чтобы на ней можно было разместить не только двигатель, но и насос. Станину лучше покрасить во избежание появления ржавчины. Разметить отверстия, просверлить и установить электродвигатель.

Подсоединяем насос

Насос следует подбирать по двум критериям. Во-первых, он должен быть центробежным. Во вторых, мощности двигателя должно хватить, чтобы его раскрутить. После того, как насос будет установлен на станину, алгоритм действий следующий:

  • В толстой трубе диаметром 100 мм и длиной 600 мм с двух сторон нужно сделать внешнюю проточку на 25 мм и в половину толщины. Нарезать резьбу.
  • На двух кусках такой же трубы длинной каждый 50 мм нарезать внутреннюю резьбу на половину длины.
  • Со стороны противоположной от резьбы приварить металлические крышки достаточной толщины.
  • По центру крышек сделать отверстия. Одно по размеру жиклёра, второе по размеру патрубка. С внутренней стороны отверстия под жиклёр сверлом большого диаметра необходимо снять фаску, чтобы получилось подобие форсунки.
  • Патрубок с форсункой подсоединяется к насосу. К тому отверстию, из которого вода подаётся под напором.
  • Вход системы отопления подсоединяется ко второму патрубку.
  • К входу насоса присоединяется выход из системы отопления.

Цикл замкнулся. Вода будет под давлением подаваться в форсунку и за счёт образовавшегося там вихря и возникшего эффекта кавитации станет нагреваться. Регулировку температуры можно осуществить, установив за патрубком, через который вода попадает обратно в систему отопления, шаровый кран.

Чуть прикрыв его, вы сможете повысить температуру и наоборот, открыв – понизить.

Усовершенствуем теплогенератор

Это может звучать странно, но и эту довольно сложную конструкцию можно усовершенствовать, ещё больше повысив её производительность, что будет несомненным плюсом для обогрева частного дома большой площади. Основывается это усовершенствование на том факте, что сам насос имеет свойство терять тепло. Значит, нужно заставить расходовать его как можно меньше.

Добиться этого можно двумя путями. Утеплить насос при помощи любых подходящих для этой цели теплоизоляционных материалов. Или окружить его водяной рубашкой. Первый вариант понятен и доступен без каких-либо пояснений. А вот на втором следует остановиться подробнее.

Чтобы соорудить для насоса водяную рубашку придётся поместить его в специально сконструированную герметическую ёмкость, способную выдерживать давление всей системы. Вода будет подаваться именно в эту емкость, и насос будет забирать её уже оттуда. Внешняя вода так же нагреется, что позволит насосу работать намного продуктивнее.

Вихрегаситель

Но, оказывается и это ещё не всё. Хорошо изучив и поняв принцип работы вихревого теплогенератора, можно оборудовать его гасителем вихрей. Подаваемый под большим давлением поток воды ударяется в противоположную стенку и завихряется. Но этих вихрей может быть несколько. Стоит только установить внутрь устройства конструкцию напоминающую своим видом хвостовик авиационной бомбы. Делается это следующим образом:

  • Из трубы чуть меньшего диаметра, чем сам генератор необходимо вырезать два кольца шириной 4-6 см.
  • Внутрь колец приварите шесть металлических пластинок, подобранных таким образом, чтобы вся конструкция получилась длинной равной четверти длины корпуса самого генератора.
  • Во время сборки устройства закрепите эту конструкцию внутри напротив сопла.

Пределу совершенства нет и быть не может и усовершенствованием вихревого теплогенератора занимаются и в наше время. Не всем это под силу. А вот собрать устройство по схеме, приведённой выше, вполне возможно.

Для отопления помещений или нагрева жидкостей зачастую применяются классические приспособления – тэны, камеры сгорания, нити накаливания и т.д. Но наряду с ними применяются устройства с принципиально иным типом воздействия на теплоноситель. К таким устройствам относится кавитационный теплогенератор, работа которого заключается в формировании пузырьков газа, за счет которых и возникает выделение тепла.

Устройство и принцип работы

Принцип действия кавитационного теплогенератора заключается в эффекте нагрева за счет преобразования механической энергии в тепловую. Теперь более детально рассмотрим само кавитационное явление. При создании избыточного давления в жидкости возникают завихрения, из-за того, что давление жидкости больше чем у содержащегося в ней газа, молекулы газа выделяются в отдельные включения – схлопывание пузырьков. За счет разности давления вода стремиться сжать газовый пузырь, что аккумулирует на его поверхности большое количество энергии, а температура внутри достигает порядка 1000 — 1200ºС.

При переходе кавитационных полостей в зону нормального давления пузырьки разрушаются, и энергия от их разрушения выделяется в окружающее пространство. За счет чего происходит выделение тепловой энергии, а жидкость нагревается от вихревого потока. На этом принципе основана работа тепловых генераторов, далее рассмотрите принцип работы простейшего варианта кавитационного обогревателя.

Простейшая модель

Рис. 1: Принцип работы кавитационного теплогенератора

Посмотрите на рисунок 1, здесь представлено устройство простейшего кавитационного теплогенератора, который заключается в нагнетании насосом воды к месту сужения трубопровода. При достижении водяным потоком сопла давление жидкости значительно возрастает и начинается образование кавитационных пузырьков. При выходе из сопла пузырьки выделяют тепловую мощность, а давление после прохождения сопла значительно снижается. На практике может устанавливаться несколько сопел или трубок для повышения эффективности.

Идеальный теплогенератор Потапова

Идеальным вариантом установки считается теплогенератор Потапова, который имеет вращающийся диск (1) установленный напротив стационарного (6). Подача холодной воды осуществляется с трубы расположенной внизу (4) кавитационной камеры (3), а отвод уже нагретой с верхней точки (5) той же камеры. Пример такого устройства приведен на рисунке 2 ниже:


Рис. 2: кавитационный теплогенератор Потапова

Но широкого распространения устройство не получило из-за отсутствия практического обоснования его работы.

Виды

Основная задача кавитационного теплогенератора – образование газовых включений, а от их количества и интенсивности будет зависеть качество нагрева. В современной промышленности существует несколько видов таких теплогенераторов, отличающихся принципом выработки пузырьков в жидкости. Наиболее распространенными являются три вида:

  • Роторные теплогенераторы – рабочий элемент вращается за счет электропривода и вырабатывает завихрения жидкости;
  • Трубчатые – изменяют давление за счет системы труб, по которым движется вода;
  • Ультразвуковые – неоднородность жидкости в таких теплогенераторах создается за счет звуковых колебаний низкой частоты.

Помимо вышеперечисленных видов существует лазерная кавитация, но промышленной реализации этот метод еще не нашел. Теперь рассмотрим каждый из видов более детально.

Роторный теплогенератор

Состоит из электрического двигателя, вал которого соединен с роторным механизмом, предназначенным для создания завихрений в жидкости. Особенностью роторной конструкции является герметичный статор, в котором и происходит нагревание. Сам статор имеет цилиндрическую полость внутри – вихревую камеру, в которой происходит вращение ротора. Ротор кавитационного теплогенератора представляет собой цилиндр с набором углублений на поверхности, при вращении цилиндра внутри статора эти углубления создают неоднородность в воде и обуславливают протекание кавитационных процессов.


Рис. 3: конструкция генератора роторного типа

Количество углублений и их геометрические параметры определяются в зависимости от модели . Для оптимальных параметров нагрева расстояние между ротором и статором составляет порядка 1,5мм. Данная конструкция является не единственной в своем роде, за долгую историю модернизаций и улучшений рабочий элемент роторного типа претерпел массу преобразований.

Одной первых эффективных моделей кавитационных преобразователей был генератор Григгса, в котором использовался дисковый ротор с несквозными отверстиями на поверхности. Один из современных аналогов дисковых кавитационных теплогенераторов приведен на рисунке 4 ниже:


Рис. 4: дисковый теплогенератор

Несмотря на простоту конструкции, агрегаты роторного типа достаточно сложные в применении, так как требуют точной калибровки, надежных уплотнений и соблюдения геометрических параметров в процессе работы, что обуславливает трудности их эксплуатации. Такие кавитационные теплогенераторы характеризуются достаточно низким сроком службы – 2 — 4 года из-за кавитационной эрозии корпуса и деталей. Помимо этого они создают достаточно большую шумовую нагрузку при работе вращающегося элемента. К преимуществам такой модели относится высокая продуктивность – на 25% выше, чем у классических нагревателей.

Трубчатые

Статический теплогенератор не имеет вращающихся элементов. Нагревательный процесс в них происходит за счет движения воды по трубам, сужающимся по длине или за счет установки сопел Лаваля. Подача воды на рабочий орган осуществляется гидродинамическим насосом, который создает механическое усилие жидкости в сужающемся пространстве, а при ее переходе в более широкую полость возникают кавитационные завихрения.

В отличии от предыдущей модели трубчатое отопительное оборудование не производит большого шума и не изнашивается так быстро. При установке и эксплуатации не нужно заботиться о точной балансировке, а при разрушении нагревательных элементов их замена и ремонт обойдутся куда дешевле, чем у роторных моделей. К недостаткам трубчатых теплогенераторов относят значительно меньшую производительность и громоздкие габариты.

Ультразвуковые

Данный тип устройства имеет камеру-резонатор, настроенную на определенную частоту звуковых колебаний. На ее входе устанавливается кварцевая пластина, которая производит колебания при подаче электрических сигналов. Вибрация пластины создает волновой эффект внутри жидкости, который достигая стенок камеры-резонатора и отражается. При возвратном движении волны встречаются с прямыми колебаниями и создают гидродинамическую кавитацию.


Рис. 5: принцип работы ультразвукового теплогенератора

Далее пузырьки уносятся водным потоком по узким входным патрубкам тепловой установки. При переходе в широкую область пузырьки разрушаются, выделяя тепловую энергию. Ультразвуковые кавитационные генераторы также обладают хорошими эксплуатационными показателями, так как не имеют вращающихся элементов.

Применение

В промышленности и в быту кавитационные теплогенераторы нашли реализацию в самых различных сферах деятельности. В зависимости от поставленных задач они применяются для:

  • Отопления – внутри установок происходит преобразование механической энергии в тепловую, благодаря чему нагретая жидкость двигается по системе отопления. Следует отметить, что кавитационные теплогенераторы могут отапливать не только промышленные объекты, но и целые поселки.
  • Нагревание проточной воды – кавитационная установка способна быстро нагревать жидкость, за счет чего может легко заменять газовую или электрическую колонку.
  • Смешение жидких веществ – за счет разрежения в слоях с получением мелких полостей такие агрегаты позволяют добиться надлежащего качества перемешивания жидкостей, которые естественным образом не совмещаются из-за разной плотности.

Плюсы и минусы

В сравнении с другими теплогенераторами, кавитационные агрегаты отличаются рядом преимуществ и недостатков.

К плюсам таких устройств следует отнести:

  • Куда более эффективный механизм получения тепловой энергии;
  • Расходует значительно меньше ресурсов, чем топливные генераторы;
  • Может применяться для обогрева как маломощных, так и крупных потребителей;
  • Полностью экологичен – не выделяет в окружающую среду вредных веществ во время работы.

К недостаткам кавитационных теплогенераторов следует отнести:

  • Сравнительно большие габариты – электрические и топливные модели имеют куда меньшие размеры, что немаловажно при установке в уже эксплуатируемом помещении;
  • Большая шумность за счет работы водяного насоса и самого кавитационного элемента, что затрудняет его установку в бытовых помещениях;
  • Неэффективное соотношение мощности и производительности для помещений с малой квадратурой (до 60м 2 выгоднее использовать установку на газу, жидком топливе или эквивалентной электрической мощности с нагревательным тэном).\

КТГ своими руками

Наиболее простым вариантом для реализации в домашних условиях является кавитационный генератор трубчатого типа с одним или несколькими соплами для нагревания воды. Поэтому разберем пример изготовления именно такого устройства, для этого вам понадобится:

  • Насос – для нагревания обязательно выбирайте тепловой насос, который не боится постоянного воздействия высоких температур. Он должен обеспечивать рабочее давление на выходе в 4 – 12атм.
  • 2 манометра и гильзы для их установки – размещаются с двух сторон от сопла для измерения давления на входе и выходе из кавитационного элемента.
  • Термометр для измерения величины нагрева теплоносителя в системе.
  • Клапан для удаления лишнего воздуха из кавитационного теплогенератора. Устанавливается в самой верхней точке системы.
  • Сопло – должно иметь диаметр проходного отверстия от 9 до 16мм, делать меньше не рекомендуется, так как кавитация может возникнуть уже в насосе, что значительно снизит срок его эксплуатации. По форме сопло может быть цилиндрическим, коническим или овальным, с практической точки зрения вам подойдет любое.
  • Трубы и соединительные элементы (радиаторы отопления при их отсутствии) – выбираются в соответствии с поставленной задачей, но наиболее простым вариантом являются пластиковые трубы под пайку.
  • Автоматика включения/отключения кавитационного теплогенератора – как правило, подвязывается под температурный режим, устанавливается на отключение примерно при 80ºС и на включение при снижении менее 60ºС. Но режим работы кавитационного теплогенератора вы можете выбрать самостоятельно.

Рис. 6: схема кавитационного теплогенератора

Перед соединением всех элементов желательно нарисовать схему их расположения на бумаге, стенах или на полу. Места расположения необходимо размещать вдали от легковоспламеняемых элементов или последние нужно убрать на безопасное расстояние от системы отопления.

Соберите все элементы, как вы изобразили на схеме, и проверьте герметичность без включения генератора. Затем опробуйте в рабочем режиме кавитационного теплогенератора, нормальным нарастанием температуры жидкости считается 3- 5ºС за одну минуту.

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Баня-Экстерт