Баня-Экстерт

Основными показателями режима кислородной резки являются:

Вид горючего газа;
- мощность подогревающего пламени;
- давление режущего кислорода;
- расход режущего кислорода;
- давление горючего газа;
- скорость резки.

Все эти показатели связаны с толщиной разрезаемого металла, химического состав стали, чистоты кислорода и конструкции резака.

Вид горючего газа

При газовой резке происходит подогрев металла только до температуры горения, поэтому могут использоваться все горючие газы.
Однако газы, имеющие более низкую температуру пламени, требуют большего времени на подогревметалла перед резкой. Ацетилен обеспечивает получение пламени с самой высокой температурой. Поэтому нагрев металла в начале резки с использованием ацетиленового пламени происходит значительно быстрее, чем с использованием других горючих газов. Однако при резке металла большой толщины и длинных резов относительные потери времени не таквелики, поэтому горючие газы – заменители, имеющие более низкую стоимость, также широко применяются при газовой резке. Ацетиленовое пламя наиболее эффективно использовать при газовой резке тонкого металла ив случае большого количества коротких резов, требующих подогрева детали.

Мощность подогревающего пламени

Мощность подогревающего пламени выбираетсяв зависимости от толщины разрезаемого металла. При резке сталей используется нормальное пламя. Мощность пламени определяется номером наружного наконечника.

При ручной резке обычно используется 2 номера наружного наконечника:

– для металла толщиной не более 50 мм;

Для металла толщиной 50 – 200 мм

Давление режущего кислорода

Давление режущего кислорода выбирается в зависимости от толщины разрезаемого металла. Величина давлениярежущего кислорода указывается нанаружном наконечнике, выбираемомв зависимости от толщины разрезаемого металла. Чем больше толщина металла, тем больше должно быть давление режущего кислорода.

Если давление режущего кислорода слишком маленькое, то струя кислорода не сможет выдуть шлаки с места реза и металл не будет прорезан на всю толщину.

Если давление режущего кислорода слишком большое, то расход его возрастает и разрез получается недостаточно чистым.

Расход режущего кислорода

Расход режущего кислорода должен быть достаточен для окисления линии реза. Расход кислорода зависит от величины давления режущего кислорода и диаметра отверстия внутреннего мундштука, которые выбираются в зависимости от толщины металла.

Давление горючего газа

Давление горючего газа устанавливается в пределах0,5 – 1,0 бар в зависимости от толщины металла. Чем больше толщина металла, тем больше давление горючего газа.

Скоростькислородной резки

Скорость резки должна соответствовать скорости окисления металла.

При малой скорости происходит плавление верхней кромки реза,а при большой скорости образуются не прорезанные участки и возможно нарушение непрерывности резки.

Скорость резки, в основном, зависит от толщины разрезаемого металла. А также на скорость резки оказывают влияние:

  • степень механизации процесса (ручная или машинная резка);
  • форма линии реза (прямолинейная или фигурная);
  • качество поверхности реза (разделочная, заготовительная с припуском на механическую обработку, заготовительная под сварку, чистовая)

Установлено, что уменьшение чистоты кислорода на 1% снижает скорость резки в среднем на 20%. Поэтому применять кислород чистотой ниже 99% нецелесообразно из-за снижения скорости и качества поверхности реза. Кислород должен быть чистотой 99,5% и более.

На практике необходимую скорость резки можно определить по направлению потока искр и шлака при резке.

1. Скорость резки мала; 2. Оптимальная скорость резки; 3. Скорость резки велика (3)

где D - номинальный диаметр фрезы.

Порядок фрезерования

1. По диаметру фрезы, ширине фрезерования, глубине резания и подаче на один зуб, определяется скорость резания и минутная подача. Следует учитывать особые условия конкретного фрезерования: наличие или отсутствие охлаждения, особенности конструкции фрезы и т. д.
2. Произвести настройку скорости вращения шпинделя.
3. Произвести настройку подачи шпинделя.

Износ инструмента

Чем больше скорость резания, тем больше выделяется тепла и тем больше нагреваются зубья фрезы. При достижении определённой температуры режущая кромка теряет твердость, и фреза перестаёт резать. Температура, при которой фреза перестаёт резать, для разных фрез различна и зависит от материала, из которого изготовлена фреза.
В процессе работы фреза затупляется. Затупление фрезы происходит вследствие износа, вызываемого трением сходящей стружки о переднею поверхность зуба и трением задней поверхностью зуба фрезы об обрабатываемую поверхность. Трение вызывает также увеличение температуры режущего инструмента, что в свою очередь снижает твёрдость его лезвия и способствует более быстрому износу. В процессе работы фреза проходит три стадии износа:

1. Новая, острая фреза - годная к эксплуатации.
Признаки: наличие заводской смазки, нормальный цвет поверхности (без окалин), ровная одноразовая заточка.
2. Фреза с нормальным износом - фрезу далее эксплуатировать нерационально, лучше заточить.
Признаки: наступление вибрации, появление неровной (рваной) поверхности обработки и чрезмерный нагрев вследствие увеличения трения.
3. Фреза с катастрофическим износом - восстановление фрезы практически невозможно.
Признаки: визуально видно, что рабочая кромка фрезы разрушена.

Режимы резки, используемые на практике, в зависимости от обрабатываемого материала и типа фрезы

Таблица (приведенная ниже) содержит справочную информацию параметров режима резания, взятые из практики. От этих режимов рекомендуется отталкиваться при обработке различных материалов со схожими свойствами, но необязательно строго придерживаться их.

Необходимо учитывать, что на выбор режимов резания, при обработке одного и того же материала одним и тем же инструментом, влияет множество факторов, основными из которых являются: жесткость системы Станок-Приспособление-Инструмент-Деталь (СПИД), охлаждение инструмента, стратегия обработки, высота слоя, снимаемого за проход, и размер обрабатываемых элементов.

Фрезерной обработке лучше всего подвергать пластики, полученныйе литьем, т.к. у них более высокая температура плавления.
-При резке акрила и алюминия желательно для охлаждения инструмента использовать смазывающую и охлаждающую жидкость (СОЖ), в качестве СОЖ может выступать обыкновенная вода или универсальная смазка WD-40 (в баллончике).
-При резке акрила, когда подсаживается (притупляется) фреза, необходимо понизить обороты до момента, пока не пойдет колкая стружка (осторожнее с подачей при низких оборотах шпинделя - вырастает нагрузка на инструмент и соответственно вероятность его сломать).
-Для фрезеровки пластиков и мягких металлов наиболее подходящими являются однозаходные (однозубые) фрезы (желательно с полированной канавкой для отвода стружки). При использовании однозаходных фрез создаются оптимальные условия для отвода стружки и соответственно отвода тепла из зоны реза.
-При фрезеровке рекомендуется применять такую стратегию обработки, при которой идет беспрерывный съем материала со стабильной нагрузкой на инструмент.
-При фрезеровке пластиков, для улучшения качества реза, рекомендуется использовать встречное фрезерование.
-Для получения приемлемой шероховатости обрабатываемой поверхности, шаг между проходами фрезы/гравера необходимо делать равным или меньше рабочего диаметра фрезы(d)/пятна контакта гравера(T).
-Для улучшения качества обрабатываемой поверхности желательно не обрабатывать заготовку на всю глубину сразу, а оставить небольшой припуск на чистовую обработку.
-При резке мелких элементов необходимо снизить скорость резания, чтобы вырезанные элементы не откалывались в процессе обработки и не повреждались.

Основной принцип действия фрезерного станка с ЧПУ

Фрезерование заготовок происходит при взаимодействии режущего инструмента с материалом. Степень вхождения зубьев фрезы в материал зависит от угла заострения. Чем меньше угол - тем меньше сила резания.

Выбор диаметра фрезы определяется шириной и глубиной фрезерования. Оба параметра задаются в чертежах и соответствуют размеру заготовки. При необходимости изготовления нескольких заготовок, параметры умножаются на число необходимых деталей.

Во время работы на фрезерных станках с ЧПУ фреза осуществляет вращательные движения, постепенно снимающие необходимые слои материала с заготовки, которая, в свою очередь совершает поступательное движение относительно фрезы. В зависимости от конструкции станка, либо стол движется в отношении фрезы, либо фреза во втором - фреза в отношении стола.

В процессе производства задействованы два элемента - фреза и заготовка. Однако все манипуляции производятся фрезой. Управление осуществляется при помощи компьютера или другого вычислительного устройства.

Основные режимы

Фрезерные станки имеют несколько основных режимов работы, параметры которых регулируются в зависимости от материала. Основные режимы работы включают в себя: раскрой, выборку и гравировку.

Обозначенный режим работы используется для нарезания заготовок и придания изделию форм. Работа в этом режиме выполняется с использованием спиральной 1-заходной или 2-заходной фрезы.

Гравировка включает в себя нанесение на поверхность материала рисунков или надписей с использованием гравера.

Выбор фрезы

Для успешной работы необходимо правильно выбрать фрезу. Выбор фрезы определяется двумя параметрами - глубиной и шириной фрезерования режущей поверхности. Обычно эти параметры указываются в чертежах для заготовок и зависят от планируемого размера деталей.

Глубина резанья - показатель, определяющий толщину материала, снимаемого фрезой на один проход. При обработке твёрдых материалов фреза совершает несколько проходов, тогда поверхность материала получается более гладкой. Тем не менее, при небольшой глубине фреза производит всего один проход. Ширина фрезерования - измеряется размером заготовки. Оба параметра задаются в чертежах.

Под скоростью резания понимается путь, который проходит фреза во время работы в течение одной минуты. Путь принято обозначать в метрах. Оптимальная скорость рассчитывается исходя из дины окружности фрезы и количества зубьёв. Общую длину окружности фрезы умножают на число её зубьев и количество совершаемых оборотов в минуту. Для получения метрического результата полученное значение необходимо разделить на 1000, по количеству миллиметров в метрах.

Оптимальную скорость для разных материалов определяют согласно справочным таблицам. Скорость резки во время работы станка зависит от надёжности фрезы, поэтому в таблицах приводятся максимально допустимые значения оборотов станка, при которых невозможно повреждение фрезы.

Перемещение шпинделя

Фреза передвигается в трёх направлениях, согласно координатной оси, где X - соответствует поперечному перемещению шпинделя, Y - продольному, а Z - вертикальному направлению.

Основные параметры резания - скорость подачи и вращения шпинделя. Подача в одну минуту означает величину перемещения, совершаемую шпинделем за одну минуту. Эта величина измеряется в миллиметрах. Её рассчитывают исходя из количества зубьев фрезы и оборотов, совершаемых в минуту. Таким образом подача в одну минуту равна подаче на один зуб фрезы, умноженной на число зубьев и оборотов в минуту.

Выбор режима работы

Выбор режима обработки зависит от материалов, мощности станка, и скорости обработки. Чем выше мощность станка, тем выше скорость получения детали, что отражается на интенсивности производства. Но слишком высокая скорость снижает качество обработки, поэтому выбор скорости определяется свойствами материала и наличием системы охлаждения станка и уборки стружки, а также тип фрезы. Основные данные относительно скоростей и глубины подачи резания и фрезеровки содержатся в прилагающихся таблицах. В таблице указываются максимально допустимые значения для обозначенных видов материалов, поскольку значение, превышающее обозначенное число может привести либо к порче фрезы, либо заготовки.

Материал

Режим работы

Тип фрезы и параметры

Частота, об/мин

Подача (XY), мм/сек

Подача (Z), мм/сек

Примечание

Гравировка V-гравером

Один проход 5 мм

Фрезеровка

1-зубая фреза D1=3 или 6 мм

Фрезерование встречное.
Один проход не более 3мм.
Использование СОЖ

ПВХ до 10 мм

Раскрой
Фрезеровка

1-зубая фреза D1=3 или 6 мм

Встречное фрезерование.

2-слойный пластик

Гравировка

Плоский гравер

0,3-0,5 мм за 1 проход.
Max шаг 50% от диаметра режущий части.

Композит

Фрезеровка

1-зубая фреза D1=3 или 6 мм

Встречное фрезерование

Дерево
ДСП

Раскрой
Фрезеровка

1-зубая фреза D1=3 или 6 мм

Встречное фрезерование.
5 мм за проход.

Max 10 мм за проход.

Гравировка

2-зубая сферическая фреза D1=3 мм

Max 5 мм за проход.

Плоский гравер D1=3 или 6 мм

Max 5 мм за проход в зависимости от материала
Max Шаг не более 50% диаметра режущий части.

V-гравировка

V-образный гравер D1=32 мм., a=90, 60 град., D2=0.2 мм

Max 3 мм за проход.

Раскрой
Фрезеровка

1-зубая фреза с удалением стружки вниз d=6 мм

Max 10 мм за проход.
При выборке шаг не более 45% от диаметра режущий части.

2-зубая компрессионная фреза D1=6 мм

Max 10 мм за проход.

Латунь
ЛС 59
Л-63
Бронза
БрАЖ

Раскрой
Фрезеровка

2-зубая фреза D1=2 мм

Max 0.5 мм за проход.

Гравировка

Гравер a=90, 60, 45, 30 град.

По 0.3 мм за проход.
Max шаг не более 50% от диаметра режущей части.
Желательно использовать СОЖ.

Дюралюминий, Д16, АД31

Раскрой
Фрезеровка

Фреза 1 зубая d=3 или 6 мм

По 0.2-0.5 мм за проход.
Желательно использовать СОЖ.

Гравировка

Гравер A=90, 60, 45, 30 град.

По 0.5 мм за проход.
Шаг не более 50% от диаметра режущий части.

Основные показатели режима резки - это давление режущего кислорода и скорость резки, которые зависят (для данного химического состава стали) от толщины разрезаемой стали, чистоты кислорода и конструкции резака.

Давление режущего кислорода имеет большое значение для резки. При недостаточном давлении струя кислорода не сможет выдуть шлаки из места реза и металл не будет прорезан на всю толщину. При слишком большом давлении кислорода расход его возрастает, а разрез получается недостаточно чистым.

Установлено, что уменьшение чистоты кислорода на 1% снижает скорость резки в среднем на 20%. Применять кислород чистотой ниже 95% нецелесообразно из-за снижения скорости и качества поверхности реза. Наиболее целесообразно и экономически оправдано применение, особенно при машинной кислородной резке, кислорода чистотой 99,5% и более.

На скорость резки также оказывают влияние степень механизации процессу (ручная или машинная резка), форма линии реза (прямолинейная или фигурная) и качество поверхности реза (разделочная, заготовительная с припуском на механическую обработку, заготовительная под сварку, чистовая).

Скорость ручной резки можно кроме таблицы также определить по формуле

где δ - толщина разрезаемой стали, мм.

Если скорость резки мала, то будет происходить оплавление кромок; если скорость слишком велика, то будут образовываться непрорезанные участки из-за отставания кислородной струи, непрерывность резки нарушится.

Режимы машинной чистовой резки деталей с прямолинейными кромками без последующей механической обработки под сварку приведены в табл. 20. Для фигурной резки скорость берется в пределах, указанных в таблице для резки двумя резаками. При заготовительной резке скорость принимается на 10 - 20% выше указанной в таблице.

Данные таблицы учитывают, что чистота кислорода - 99,5%. При меньшей чистоте расход кислорода и ацетилена возрастает, а скорость резки уменьшается; эти величины определяются умножением на поправочный коэффициент, равный:


При резке листов толщиной ∼ 100 мм экономически оправдано применение подогревающего пламени с избытком кислорода для возможно более быстрого нагрева поверхности металла.

Металлообработкой лазером называют технологию, при которой происходит нагрев материала в зоне обработки с последующим разрушением лучевым потоком. Этот процесс используют при массовом производстве, а также в частных мастерских. Использование резки лазером позволило модернизировать выпуск многих деталей. Она применяется для обработки практически всех типов металлических изделий и бывает обычная, художественная и фигурная. Это разнообразие предоставляет возможность изготавливать предметы весьма необычной формы. Для разных металлических изделий применяется соответствующее оборудование, учитывающее характеристики материала. Благодаря этому выпускаются изделия необходимой конфигурации, и исключается брак.

Несмотря на то что технология относится к дорогостоящим процессам, она весьма востребована благодаря своим возможностям. Высокое качество среза и скорость процедуры проводится практически без образования отходов. Металлические кромки получаются почти идеально ровными, не требующими дополнительной механической обработки. Это позволяет получать на выходе готовое изделие, полностью пригодное к дальнейшему использованию по назначению. На представленных ниже фото показана лазерная резка различных металлов.

Технология

В специальных устройствах для резки металлов лазером главным органом является лучевая установка. Металлическая область разрушается под воздействием высокой энергетической плотности потока. Технология лазерной резки металла заключается в использовании свойств этого луча. Он имеет постоянные значения длины волны, а также частоты (монохроматичность), что обеспечивает ее стабильность. Помимо этого, небольшой пучок можно легко сконцентрировать на маленьком участке.

На этом построена система лазерной резки металла, принцип которой заключается в воздействии на материал сгустка энергии. При этом мощность потока увеличивается в десятки раз благодаря особым типам колебаний, вызывающих резонанс. На обрабатываемой области происходит нагрев до температуры плавления металлоизделия. За небольшой временной отрезок процесс плавления увеличивается и переходит на основную толщу предмета. При значительном повышении температурного значения материал может начать испаряться.

Технология резки металла на производстве выполняется двумя методами: плавлением и испарением. При этом второй способ сопровождается повышенными энергетическими затратами, что не всегда оправданно. С увеличением толщины материала качество поверхности реза ухудшается. Наиболее широко используется плавление при работе с металлоизделиями.

Оборудование для резки

Установки, в которых активно используется лазерная резка металла содержит несколько основных элементов:

  • энергетический источник;
  • блок специальных зеркал (оптический резонатор);
  • рабочий орган, создающий лучевой поток.

По мощности рабочего органа подразделяются и сами установки:

  • до 6 кВт – твердотельные лазеры для резки металла;
  • свыше 6 и до 20 кВт – аппараты газового принципа работы;
  • от 20 до 100 кВт – устройства газодинамического типа.

Твердотельные установки используют рубин или же специально обработанное стекло, содержащее флюорит кальция в качестве добавочного компонента. Мощный импульс энергии создается за доли секунды, а работа ведется как в непрерывном режиме среза, так и в прерывистом.

Оборудование для лазерной резки металла, работающее на газовой смеси, использует электроток для нагрева газа. Состав включает азот, а также углекислый газ, гелий.

Газодинамические устройства применяют в качестве основы углекислый газ. Он нагревается и, проходя через узкое сопло, расширяется и сразу же охлаждается. При этом выделяется огромное количество тепловой энергии, способной срезать металлические изделия большой толщины. Большая мощность обеспечивает высочайшую точность среза при минимальном расходе лучевой энергии.

Устройства, на которых выполняется лазерная резка стали, а также прочих металлических материалов относятся к наиболее совершенному и высокотехнологичному оборудованию. Используя специальные станки, получают качественные и весьма точные резы, которые абсолютно не требуют проведения дополнительной механической обработки. Эти станки имеют весьма высокую стоимость и применяются на солидных предприятиях, выполняющих точную обработку разнообразных металлоизделий. Оборудование, использующее лазер для резки, не предназначено для использования в небольших частных мастерских, а также для бытовых работ.

При этом можно указать, что изредка данная техника применяется для выполнения гравировальных и прочих работ, которые требуют минимальной погрешности, точность лазерной резки металла находится на высочайшем уровне. Эти станки предоставляют возможность выполнять рез по заранее указанным параметрам. После предварительной настройки оператором дальнейший процесс переходит на автоматический режим.

Установки для реза изделий любой конфигурации способны выполнять вырезку впадин, а также фрезеровку по заданным значениям. Помимо этого, эти универсальные приспособления способны на выполнение художественной гравировки по самым различным поверхностям. Их стоимость напрямую зависит от таких показателей, как функциональность, мощность лазера для резки металла, а также бренда производителя.

Станки такого типа оснащаются специальным программным обеспечением, требующим предварительной подготовки оператора. Освоив курс работы на данной технике, управление самим процессом будет совершенно не сложным. Продажа установок этого вида проводится в специализированных магазинах, работающих со сложным оборудованием.

Режимы резки

Обработка металлоизделий лазером проводится на спецоборудовании, работающем в одном из трех режимов:

  • испарение;
  • плавление;
  • сгорание.

Испарение

Лазерная резка по металлу испарением требует высокой интенсивности лучевого потока. Это необходимо для минимизации потери тепла от теплопроводности. Для этого применяют специальные установки твердотельного типа, использующие для работы пульсирующий режим. При данном способе материал в обрабатываемом участке полностью расплавляется, после чего удаляется при помощи специального технологического газа (аргона, азота или же прочих). Данный режим металлообработки используется весьма редко.

Плавление

При этом способе материал не выгорает, а расплав уносится из области обработки газовой струей. Этот способ применяется для работы с алюминием и его сплавами, а также с медью. Это достигается за счет создания сплавов тугоплавкого типа при активном взаимодействии с кислородом. Данные металлы можно разрезать только лучевым потоком высокой мощности.

Сгорание

Этот режим использует интенсивное окисление, которое поглощает излучение лазера и повышает локальность обрабатываемой области. При таком способе отходы убираются равномерно. Режим сгорания подразделяется на управляемый и автогенный, при котором горение металлической поверхности происходит по всему участку кислородного воздействия. Этот режим не позволяет получить ровный рез и его стараются избегать.

Данные режимы лазерной резки металлов выбираются по параметрам материала и необходимой точности обработки. Следует помнить, что от толщины изделия и скорости металлообработки напрямую зависит качество процесса.

Обрабатываемые материалы

Металлообработка лазером используется для обработки алюминия, а также его многочисленных сплавов, бронзы, титана, нержавейки, меди и прочих материалов. При этом алюминиевые изделия, титановые, из нержавеющей стали обладают хорошей отражающей способностью, что негативно влияет на скорость их обработки. Листовые детали до 6 мм лучше обрабатывать азотной установкой.

Для металлических сплавов качество резки напрямую зависит от их толщины. Предметы из черной стали имеют максимальную толщину обработки 20 мм, стальные нержавеющие – 15 мм, медные – 5 мм, а алюминиевые – 10 мм.

Обработка латуни проводится как автоматизированным способом, так и ручным методом. Особенностей и сложностей при этом не возникает. Станок самостоятельно программируется весьма быстро и позволяет получить детали необходимой конфигурации.

Преимущества лазерной резки

Устройства, в которых применяется специальная лазерная резка металла позволяет обрабатывать предметы практически любой толщины. Эти станки работают как с простыми металлическими деталями, так и с нержавейкой, а также разнообразными алюминиевыми сплавами. Отсутствие прямого механического контакта сохраняет форму изделия и не вызывает повреждений, деформации поверхности. Автоматизированная система работает посредством управляющих программ, предоставляющих возможность выполнять резку с высочайшей точностью.

Установки работают не только в автоматическом режиме, но также в ручном, при котором процесс лазерной резки выполняется оператором собственноручно на высокой скорости. Данные станки обладают высокой функциональностью, а также универсальностью. Для них нет необходимости в использовании разнообразных пресс-форм, а также формочек, что значительно снижает затраты. Высокая скорость работы заметно повышает производительность процесса, при котором расходный материал используется с минимальными отходами.

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Баня-Экстерт